
A Calculus for Imperative Programs:
Formalization and Implementation

Mădălina Eraşcu and Tudor Jebelean
Research Institute for Symbolic Computation

Johannes Kepler University,
Linz, Austria

{merascu, tjebelea}@risc.uni-linz.ac.at

Abstract—As an extension of our previous work on impera-
tive program verification, we present a formalism for handling
the total correctness of While loops in imperative programs,
consisting in functional based definitions of the verification
conditions for both partial correctness and for termination. A
specific feature of our approach is the generation of verification
conditions as first order formulae, including the termination
condition which is expressed as an induction principle.

Keywords-program analysis and verification, symbolic exe-
cution, theorem proving

I. INTRODUCTION

We present a formalism for handling the total correctness
of While loops in imperative programs, consisting in func-
tional based definitions of the verification conditions for both
partial correctness and for termination. These definitions
constitute two meta-level functions which take the program
text and the loop invariant.

This is an extension of our previous work [7], in which
we present a method for the verification of imperative
recursive programs based on symbolic execution [11], for-
ward reasoning [13] and functional semantics [14]: given
a program together with its specification, forward symbolic
execution analyzes the program top-down, checking that it is
syntactically correct, each of the variable is initialized before
it is used, and that each branch has a Return statement, and
updates, eventually, the values of the variables or the path
condition. A Return statement leaves the analysis of the
program on the respective branch, generates a goal-oriented
verification condition for it, and computes the expression of
the output value(s) in terms of the input value(s) (functional
semantics). The distinctive features of our approach are:

• All verification conditions (including termination con-
dition) are formulated in the theory of the objects which
are manipulated by the program.

• The notions of program, semantics, verification con-
dition, and termination are precisely formalized in
predicate logic.

• Termination is treated in a purely logical way, namely
as the existence and uniqueness of the function imple-
mented by the program.

The treatment of While loops has similarities to the
treatment of recursive calls, namely, the loop can be com-
pared to a recursive call of a new function together with the
definition of it. The parameters of the new function are the
so called critical variables (the variables which are modified
within the loop body). The actual arguments of the call are
the values of the critical variables when entering the loop.
Because they cannot be expressed by a composite term, fresh
variables fulfilling certain conditions (the loop invariant and
the negation of the loop condition) replace them.

Following these considerations, the verification conditions
are generated using the following principles:

• For the program path which does not take into con-
sideration the analysis of the current loop, the actual
substitution is carried out, together with the negated
loop condition, in the analysis of the program state-
ments following the loop, respectively it is used for
proving that the invariant holds at the beginning of the
loop analysis.

• The symbolic values of the initialized variables when
entering the loop must fulfill the loop invariant.

• The loop invariant is inductively preserved.
• The effect of the loop is encoded as intermediate

assertions (loop invariant and negation of the loop con-
dition) on the critical variables and used as accumulated
assumptions for analyzing the rest of the program.

• The termination condition is an inductive principle,
however still expressed as a first order formula by using
a new (arbitrary but fixed) predicate symbol.

Related Work. Our approach follows the principles of
symbolic execution, forward reasoning and functional se-
mantics, but additionally gives formal definitions in a meta-
theory for the meta-level functions and predicate which
characterize the object computation. To our knowledge, there
is no other work which formalizes in predicate logic these
static analysis methods. The definitions give the possibility
of reflective view of the system by describing how the
data (the state, the program, the verification conditions) are
manipulated and by introducing a causal connection between
the data and the status of computation.

However, the ideas from the formalization of the calculus
are not completely new: [12] describes the behavior of
concurrent systems as relation between the variables in the
current state and in the post-state. A similar approach is
encountered in [4] where the program equations (involving
relation between current and post-state) are used to express
nondeterminacy and termination. In the same manner, [15]
presents the formal calculus for imperative languages con-
taining complex structures. Specification languages used in
the framework of verification tools use also this concept –
see e.g JML [6], VDM [3].

We mention that our approach keeps the verification
process very simple: the verification conditions generated
are first order logic formulae, unlike [2] which uses dynamic
logic, and the proof of correctness is kept at object-level
without introducing a model of computation, unlike [16]
which uses the fixpoint theory of programs.

Existing work on proving the partial correctness of sym-
bolically executed programs relies on the Floyd’s inductive
assertion method [8]; the programs containing loops with
unbounded number of iterations (While loops) and recur-
sive calls, whose execution leads to infinite branches, are
traversed inductively in order to generate the verification
conditions. In the inductive traversal of the tree, additional
assertions have to be provided, called inductive assertions
or invariants in the case of While loops.

Existing work focuses on termination proofs of programs
by finding termination terms [9] or by computing the closure
of some well-founded relations [1]. Unlike this, we focus on
the generation of the termination conditions similarly as it
is done for partial correctness.

II. PRELIMINARY RESULTS

In the following we summarize the results of [7].
Our approach is purely logical. An object theory Υ is used

for expressing the properties of the constants, functions and
predicates which are used in the program. (By a theory we
understand a set of formulae in the language of predicate
logic with equality.) We consider the following types of
functions:
• basic functions occur in the object theory; they only

have input conditions, but no output conditions. Typ-
ical examples are the arithmetic operations in various
number domains.

• additional functions occur in the object theory and are
usually functions implemented by other programs. In
the process of verification conditions generation only
their specification will be used.

A meta-theory is further constructed for reasoning about
the programs. It contains the properties of the meta-predicate
Π – checks that a program is syntactical correct, that every
branch contains the Return statement, and that each vari-
able is initialized before it is used, and the meta-functions
Σ – defines the semantics of a program, Γ – generates the

verification conditions, and Θ – generates one termination
condition. The output of the meta-functions consists in first
order formulae which are to be understood as universally
quantified over the free variables.

Predefined functions in the meta-theory are: Vars – re-
turning the variables which occur in a term, 〈...〉 – denoting
tuples, and ^ – denoting concatenation of tuples. The
symbol = is used as a logical equality both at meta- (in the
definitions of the meta-level functions) and object level (e.g.
as a predicate composing the condition of the If statement).
The ascending precedence of the connectives in a formula
is: = (at meta-level), ^, ⇒, etc.

The programming constructs (statements), the program
itself, as well as the terms and the formulae from the object
theory are meta-terms from the point of view of the meta-
theory, and they are considered quoted (because the meta-
theory does not contain any equalities between programming
constructs, and also does not include the object theory).

The imperative recursive language considered in our
previous work was Turing complete: abrupt statement
(Return), assignments (allowing recursive calls) and con-
ditionals (If with one and two branches). Recursive calls
are indicated by the presence of the function symbol f ,
conventionally corresponding to the function realized by the
program. A program P is a tuple of statements, it takes
as formal arguments a certain number of variables (denoted
conventionally by α) and it returns a single value (denoted
conventionally by β).

Our framework follows the paradigm of design by con-
tract: we are reasoning about programs documented with
pre- and postconditions, the first order logic formulae If [ᾱ]
and Of [ᾱ, β], respectively.

The algorithms are written in the Theorema procedural
language [5], where Program, Specification, Pre,
Post play the role of user interface commands.

For illustrating our approach we consider the algorithm
computing the greatest common divisor (GCD) of two posi-
tive integers (Example 1). One could notice the incomplete-
ness of the postcondition: a common divisor is outputted, not
the greatest. It was simplified because of space reasons, but it
has no influence on the symbolic execution of the program
and is still interesting because is expressed by existential
quantification.

The meta-predicate Π checks whether a program is syn-
tactically correct, that each branch terminates with Return
and that each variable is initialized before its usage.

For instance, in Example 1 no syntax error is detected.
The semantics of a program is defined via the meta-level

function Σ as being an implicit definition at object level
of the function implemented by the program. It works by
forward symbolic execution on all branches of the program,
using as state the current substitution for the initialized

Specification[”GCD”, G[↓ a, ↓ b],
Pre→ a ≥ 0 ∧ b > 0,
Post→ ∃

k1
∃
k2

((a = k1 ∗ β) ∧ (b = k2 ∗ β))]
Program[”GCD”, G[↓ a, ↓ b],
If[a = 0,
Return[b]];

If[b 6= 0,
If[a > b,

a := G[a− b, b],
a := G[a, b− a]]];

Return[a]],
Specification→ Specification[”GCD”]]

Example 1. GCD Algorithm

variables, producing a formula with the following shape:

{If [ᾱ] ⇒ (
pi[ᾱ] ⇒ (f [ᾱ] = gi[ᾱ])

) | i = 1..n},
where f is a new (second order) symbol denoting con-
ventionally the function defined by the program. In the
case of recursive programs, f may occur in some pi’s
(the accumulated If conditions on that path) and gi’s (the
expression obtained by symbolic execution on the respective
path).

Σ produces a conjunction of clauses, each clause repre-
senting a path of the program, a conditional definition for
f [α]. Each clause depends on the accumulated [negated]
conditions of the If statements leading to a certain Return
statement, whose argument (symbolically evaluated) rep-
resents the corresponding value of f [α]. Note that Σ ef-
fectively translates the original program into a functional
program. From this point on, one could reason about the
program using the Scott fixpoint theory [13, p. 86], however
we prefer a purely logical approach.

The semantics of the program implementing the GCD
algorithm is as follows:

a ≥ 0 ∧ b > 0 ∧ (a = 0) ⇒ (G[a, b] = b)
a ≥ 0 ∧ b > 0 ∧ a 6= 0 ∧ b 6= 0 ∧ a > b

⇒ (G[a, b] = G[a− b, b])
a ≥ 0 ∧ b > 0 ∧ a 6= 0 ∧ (b = 0) ∧ a ≤ b

⇒ (G[a, b] = G[a, b− a])

The meta-function Γ produces the verification conditions
as a conjunction of formulae at object level. It works
similarly to Σ by using symbolic execution on all branches
of the program, but additionally generates formulae using
the following principles:
• coherence (safety) conditions: formulae with the shape

Φ ⇒ Ih[t̄], where Ih is the input condition of some
function h, and t̄ is a sequence of symbolic values
of the function call. The formula Φ accumulates the
conditions from If statements and the input and output

conditions for the function calls on the respective
branch;

• functional conditions: goal oriented formulae checking
that the output condition with the currently returned
value is a consequence of the accumulated conditions
on the respective branch.

In most of the cases the programs contain calls of nested
functions. When generating the verification conditions for
the respective terms we ensure the safety conditions of all
the functions of the call, by unwinding the term from the
innermost to the outermost function symbol.

We implemented the function which generates the ver-
ification conditions in a prototype implementation VCG,
integrated in Theorema, written in Mathematica [17]. It takes
as input a program together with its specification, analyzes
the program top-down and produces as output a set of first
order formulae (i.e. verification conditions) constituting the
input of a prover that checks their validity.
The verification conditions (simplified due to space reasons)
for the GCD algorithm are generated with the command:

VCG[Program[”GCD”]]

a = 0 ∧ b > 0 ⇒ ∃
k1
∃
k2

(
(a = k1 ∗ b) ∧ (b = k2 ∗ b)

)
(1)

a > 0 ∧ b > 0 ∧ a > b ⇒ a− b ≥ 0 ∧ b > 0 (2)

a > 0∧b > 0∧a > b ∧ ∃
k1
∃
k2

(
(a− b = k1 ∗ t1) ∧ (b = k2 ∗ t1)

)

⇒ ∃
k1
∃
k2

(
(a = k1 ∗ t1) ∧ (b = k2 ∗ t1)

)
(3)

a > 0 ∧ b > 0 ∧ ∧a ≤ b ⇒ a ≥ 0 ∧ b− a > 0 (4)
a>0∧b > 0∧b−a > 0∧∃

k1
∃
k2
((a = k1 ∗ t2)∧(b−a = k2 ∗ t2))

⇒ ∃
k1
∃
k2
((a = k1 ∗ t2) ∧ (b = k2 ∗ t2)) (5)

a > 0 ∧ b > 0 ∧ b = 0 ⇒ ∃
k1
∃
k2
((a = k1 ∗ a) ∧ (b = k2 ∗ a))

(6)

Remark 1:
1) The function G can not occur in the verification

conditions thus its occurrences are replaced by the
variables t1 and t2 (e.g. (3), (5)).

2) Additionally to the input variables, the newly intro-
duced variables k1 and k2 are bound.

3) The program output has the expressions: b in (1), t1
in (3), t2 in (5), a in (6).

Programs with no recursive call always terminate. We
consider in [7] the termination of imperative recursive pro-
grams expressed as: ,,The formula ∀

α
If [α] ⇒ Of [α, f [α]] is

a logical consequence of the object theory augmented with
Σ[P] and with the verification conditions.” However, this
always holds in the case that Σ[P] (program semantics) is
contradictory to Υ, which may happen when the program
is recursive. Therefore, it is crucial that the existence (and
possibly the uniqueness) of an f satisfying Σ[P] is a

logical consequence of the object theory augmented with the
verification conditions. More concretely, before using Σ[P]
as an assumption, one should guarantee that ∃

f
Σ[P]. The later

is ensured by the termination condition which is expressed
as an induction scheme developed from the structure of the
recursion.

In our approach the termination condition is generated
by the meta-function Θ, in which a new constant symbol
π occurs, standing for an arbitrary predicate. It operates
similarly to Γ by inspecting all the possible branches,
collecting the conditions of the If statements and of the
output specification of the additional functions occurring in
the program, including the currently defined defined function
f . In the last case, which happens for the recursive calls,
one also collects the condition π[γσ] – that is the arbitrary
predicate applied to the current symbolic values of the
arguments of the recursive call to f .

For Example 1 the termination condition is:

∀
a≥0∧b>0

∧

a = 0 ⇒ π[a, b]
a 6= 0 ∧ b 6= 0 ∧ a > b ∧ π[a− b, b] ⇒ π[a, b]
a 6= 0 ∧ b 6= 0 ∧ a ≤ b ∧ π[a, b− a] ⇒ π[a, b]
a 6= 0 ∧ b = 0 ⇒ π[a, b]

⇒ π
a≥0∧b>0

[a, b]

III. A CALCULUS FOR PROGRAMS CONTAINING While
LOOPS

In this work we extend the formal framework for ana-
lyzing the [total] correctness of While loops; it handles
the partial correctness of abrupt terminating loops (Section
III-C), but not their termination (Section III-D).

Notations: As states of execution we use substitutions
σ (set of replacements of the form {var → expr}). Note
that we sometimes write {var → expr} instead of {var1 →
expr1, var2 → expr2, ...}.

All the formulae composing the meta-definitions are to be
understood as universally quantified over the meta-variables
of various types as follows; v ∈ V is a variable from the set
V of variables, V ⊂ V is the set of initialized variables, ϕ is
an object level formula standing for the While condition,
B is a tuple of statements representing the loop body. The
symbol ι denotes conventionally the loop invariant and it
is a conjunction of first order logical formulae. We call
the variables δ modified within the While loop critical
variables; they are replaced with new symbolic values δ0

when entering the loop and with δ̄′ when exiting the loop
body.

In conjunction with the critical variables there are two
special substitutions used in the calculus: σ0 = {δ̄ → δ̄0}σ
appears each time program analysis with fresh symbols for
the critical variables has to be performed (e.g. the analysis
of the While loop starts with this type of substitution)
and σ′ = {δ̄ → δ̄′}σ – when exiting the While loop the

program analysis continues with the values for the critical
variables at loop exit, denoted by the symbolic values δ̄′.

We consider the term t and γ, γ – a variable and/or
a constant and respectively a sequence of variables and/or
constants from the object theory Υ.

Loops are meta-terms with the structure: While[ϕ, ι, B].
Example 2 is the Dijkstra algorithm for computing si-

multaneously the greatest common divisor (GCD) and the
least common multiple (LCM) of two positive integers.
Note that the functions LCM and GCD associated to the
corresponding algorithms are in the object theory.

Specification[”GCD− LCM”, LG[↓ a, ↓ b],
Pre→ a > 0 ∧ b > 0,
Post→ β = LCM(a, b)]

Program[”GCD− LCM”, LG[↓ a, ↓ b],
x = a; y = b; u = b; v = a;
While[x 6= y,

GCD[x, y] = GCD[a, b] ∧ x > 0 ∧ y > 0
∧ x ∗ u + y ∗ v = 2 ∗ a ∗ b,

If[x > y,
x = x− y; v = v + u,
y = y − x;u = u + v]];

Return[(u + v)/2]],
Specification→ Specification[”GCD− LCM”]]

Example 2. LCM-GCD Algorithm

Example 3 is the linear algorithm for searching a partic-
ular value in an array.

Specification[”LinSearch”, LS[↓ A, ↓ n, ↓ e],
Pre→ n ≥ 1,
Post→ ∃

1≤k≤n
A[k] = e ⇒ A[β] = e

∧ ∀
1≤k≤n

A[k] 6= e ⇒ β = 0

Program[”LinSearch”, LS[↓ A, ↓ n, ↓ e],
i = 1;
While[i ≤ n,

(i ≤ n + 1) ⇒ ∀
1≤k<i

A[k] 6= e,

If[e = A[i],
Return[i]];

i = i + 1];
Return[0]],

Specification→ Specification[”LinSearch”]]

Example 3. Linear Search Algorithm

A. Syntax

The predicate Π checks a program for syntactic correct-
ness including the fact that each variable is initialized and
that each branch contains a Return statement.

Definition 2:
1) Π[P] ⇔ Π[{ᾱ}, P]

2) Π[V, 〈Return[t]〉 ^ P] ⇔ V ars[t] ⊆ V

3) Π[V, 〈v : = t〉 ^ P] ⇔ ∧ {
V ars[t] ⊆ V
Π[V ∪ {v}, P]

4) Π[V, 〈If[ϕ,PT , PF]〉 ^ P] ⇔ ∧

V ars[ϕ] ⊆ V
Π[V, PT ^ P]
Π[V, PF ^ P]

5) Π
[
V, 〈While[ϕ, ι, B]〉 ^ P

] ⇔
∧

V ars[ϕ] ⊆ V
Π

[
V, B ^ 〈Return[True]〉]

Π
[
V, P

]

6) Π[V, P] = F
In the case of While loops (Definition 2.5), the Return

statement may occur in the loop body B, but mandatory in
P .

B. Semantics

The formula standing for the program semantics is gen-
erated using the following inductive definitions:

Definition 3:

1) Σ[P] =
(
If [ᾱ] ⇒ Σ[{ᾱ → ᾱ0}, P]{ᾱ0 → ᾱ})

2) Σ[σ, 〈Return[t]〉 ^ P] = (f [ᾱ0] = tσ)

3) Σ[σ, 〈v := t〉 ^ P] = Σ[σ{v → tσ}, P]

4) Σ[σ, 〈If[ϕ, PT , PF]〉 ^ P] =
∧

{
ϕσ ⇒ Σ[σ, PT ^ P]
¬ϕσ ⇒ Σ[σ, PF ^ P]

5) Σ
[
σ, 〈〉] = True

6) Σ
[
σ, 〈While[ϕ, ι, B]〉 ^ P

]
=

∧

¬ϕσ ⇒ Σ[σ, P](
ϕσ0 ∧ ισ0 ⇒ Σ

[
σ0, B

]){δ̄0→ δ̄}
¬ϕσ′ ∧ ισ′ ⇒ Σ

[
σ′, P

]

For While loops the program semantics is constructed
by considering three possible execution paths: the loop is
not executed at all or at least once. In the first case the
program semantics is constructed by considering the current
substitution and the statements after the loop body. In the
second case distinction between the occurrence and absence
of the abrupt statement Return in the loop body is made:
if it occurs in the loop body, then the program function
is computed on the respective branch with the current
symbolic values for the critical variables, otherwise, the loop
characterization (the negation of the loop condition and the
loop invariant), used as accumulated assumptions, and the
substitution at the exit point of the loop – σ′ – are used for
further computing the program function on the respective
path. Note that Definition 3.5 handles the case when the
loop analysis reaches its end and no abrupt statement was
encountered: the loop does not bring new information in the
semantics of the program.

The program semantics for Example 2 is:

a > 0 ∧ b > 0 ∧ (a = b) ⇒ LG[a, b] = b (7)

a > 0 ∧ b > 0 ⇒ True (8)

a > 0 ∧ b > 0 ⇒ True (9)

a > 0∧b > 0∧x′ = y′∧GCD[x′, y′]=GCD[a, b]∧x′ > 0

∧y′ > 0∧x′ ∗ u′ + y′ ∗ v′=2 ∗ a ∗ b⇒LG[a, b]=
u′ + v′

2
(10)

but actually only (7) and (10) are relevant.
For the algorithm performing linear search in an array

(Example 3), the program semantics is as follows:

n ≥ 1 ∧ (1 > n) ⇒ LS[A,n, e] = 0 (11)

n ≥ 1 ∧ i ≤ n ∧ (i ≤ n + 1 ⇒ ∀
1≤k<i

A[k] 6= e) ∧ e = A[i]

⇒ LS[A,n, e] = i (12)

n ≥ 1 ∧ i ≤ n ∧ (i ≤ n + 1 ⇒ ∀
1≤k<i

A[k] 6= e) ∧ e 6= A[i]

⇒ True (13)

n ≥ 1 ∧ i′ > n ∧ (i′ ≤ n + 1 ⇒ ∀
1≤k<i′

A[k] 6= e) (14)

⇒ LS[A,n, e] = 0 (15)

Note that the value of LS can not be 0, because assump-
tions of the formula (11) are contradictory, and that (13)
does not contribute to the program semantics.

C. Partial Correctness

As we mentioned before, the meta-level function Γ gener-
ates coherence (safety) conditions and functional conditions,
which together ensure partial correctness.

Definition 4:
1) Γ[P] = Γ[{ᾱ → ᾱ0}, If [ᾱ0], P]{ᾱ0 → ᾱ}
2) Γ[σ, Φ, 〈Return[γ]〉 ^ P] =

〈
Φ ⇒ Of [ᾱ0, γσ]

〉

3) Γ[σ, Φ, 〈v := γ〉 ^ P] = Γ[σ{v → γσ}, Φ, P]
4) Γ[σ, Φ, 〈v := h[γ]〉 ^ P] =〈

Φ ⇒ Ih[γσ]
〉

^ Γ[σ{v → h[γσ]}, Φ∧ Ih[γσ], P]
5) Γ[σ, Φ, 〈v := g[γ]〉 ^ P] =

〈
Φ ⇒ Ig[γσ]

〉
^ Γ[σ{v → c},Φ ∧ Ig[γσ] ∧Og[γσ, c], P]

6) Γ[σ, Φ, 〈If[ϕ, PT , PF]〉 ^ P] =
Γ[σ, Φ∧ϕσ, PT ^ P] ^ Γ[σ, Φ∧¬ϕσ, PF ^ P]

7) Γ
[
σ, Φ, 〈〉] =

〈
Φ ⇒ ισ

〉

8) Γ
[
σ, Φ, 〈While[ϕ, ι, B]〉 ^ P

]
=

^

Γ
[
σ, Φ ∧ ¬ϕσ, P

]
〈
Φ ⇒ ισ

〉
(
Γ
[
σ0, Φ ∧ ισ0 ∧ ϕσ0, B

]){δ̄0→ δ̄}
Γ
[
σ′, Φ ∧ ισ′ ∧ ¬ϕσ′, P

]
The verification conditions for the While loop are gen-

erated as follows: at its entry point the invariant must hold,
the invariant must be inductively preserved by the operations

done in the loop body, the loop invariant and the negated
loop condition are used as premises for further analyzing
the program. As we said before, the loop is viewed as a
separate module, so the analysis of the loop body is done
with new fresh values for the critical variables. The values
for the critical variables which are computed by the loop are
encoded in the primed values introduced and they are used
further in the analysis of the program.

The set of verification conditions for Example 2 is:

a > 0 ∧ b > 0 ∧ (a = b) ⇒ (LCM(a, b) =
b + a

2
)

a > 0 ∧ b > 0 ⇒ (
GCD[a, b] = GCD[a, b] ∧ a > 0 ∧ b > 0

∧ a ∗ b + b ∗ a = 2 ∗ a ∗ b
)

(
a > 0 ∧ b > 0 ∧GCD[x, y] = GCD[a, b] ∧ x > 0 ∧ y > 0
∧ x ∗ u + y ∗ v = 2 ∗ a ∗ b ∧ x 6= y ∧ x > y

)

⇒ (
GCD[x− y, y] = GCD[a, b] ∧ x− y > 0 ∧ y > 0

∧ (x− y) ∗ u + y ∗ (v + u) = 2 ∗ a ∗ b
)

(
a > 0 ∧ b > 0 ∧GCD[x, y] = GCD[a, b] ∧ x > 0 ∧ y > 0
∧ x ∗ u + y ∗ v = 2 ∗ a ∗ b ∧ x 6= y ∧ x ≤ y

)

⇒ (
GCD[x, y − x] = GCD[a, b] ∧ x > 0 ∧ y − x > 0
∧ x ∗ (u + v) + (y − x) ∗ v = 2 ∗ a ∗ b

)
(
a > 0∧b > 0∧GCD[x′, y′] = GCD[a, b]∧x′ > 0∧y′ > 0
∧ x′ ∗ u′ + y′ ∗ v′ = 2 ∗ a ∗ b ∧ x′ = y′

)

⇒ (u′ + v′

2
= LCM [a, b]

)

For Example 3 the verification conditions are:

n ≥ 1 ∧ 1 > n

⇒ (∃
1≤k≤n

A[k] = e ⇒ A[0] = e ∧ ∀
1≤k≤n

A[k] 6= e ⇒ 0 = 0
)

n ≥ 1 ∧ i ≤ n ∧ (i ≤ n + 1 ⇒ ∀
1≤k<i

A[k] 6= e) ∧ e = A[i]

⇒ (∃
1≤k≤n

A[k] = e ⇒ A[i] = e ∧ ∀
1≤k≤n

A[k] 6= e ⇒ i = 0
)

n ≥ 1 ∧ i ≤ n ∧ (i ≤ n + 1 ⇒ ∀
1≤k<i

A[k] 6= e) ∧ e 6= A[i]

⇒ (
i ≤ n ⇒ ∀

1≤k≤i
A[k] 6= e

)

n ≥ 1 ∧ i′ > n ∧ (i′ ≤ n + 1 ⇒ ∀
1≤k<i′

A[k] 6= e) ⇒
(∃
1≤k≤n

A[k] = e ⇒ A[i′] = e ∧ ∀
1≤k≤n

A[k] 6= e ⇒ i′ = 0
)

D. Termination

We present a novel method for handling the termination of
While loops: a loop is viewed as a separate module whose
template termination condition is expressed as an induction
principle depending on the structure of the loop, where a
new predicate symbol π is used. The termination condition
is generated by the meta-level function Θ, which is extended
to handle termination of imperative non-recursive programs
containing normal terminating non-nested While loops.

In the termination condition the crucial role is played
by the critical variables and therefore Θ has to remember
which critical variables correspond to each loop in order to
attribute the right arguments to the predicate π. If for non-
nested While loops programs they can be determined and
distinguished easily by analyzing the assignments from each
loop body, for nested While loops programs (including
the abrupt terminating ones) the critical variables of the
corresponding loop have to be determined. Moreover Θ
has to distinguish between abrupt and, respectively, normal
terminating loops.

In the following sections we present the termination of
programs that have non-nested, normal terminating, While
loops.

1) Termination of the While Loops: We approach the
termination of the While loops by placing cuts at the entry
and exit points into the source code of the program. In
this manner the loop is viewed as a separate module whose
template termination condition formula is:

∀̄
δ:Φ

∧
{¬ϕ ⇒ π[δ̄]
ϕ ∧Ψ ∧ π[δ̄σW {δ̄0 → δ̄}] ⇒ π[δ̄]

}
⇒ π[δ̄σI]

The template termination condition states the following:
for all critical variables satisfying the accumulated path
condition Φ at the entry point of the loop, if the loop
condition is not fulfilled then the loop terminates for the
corresponding critical variables and if the loop analysis
leads to loop termination for the same critical variables then
the respective loop terminates for the input values of the
critical variables. The loop analysis implies collecting in
Ψ the loop invariant, the conditions of the If statements,
if it is the case, and the output characterization of the
additional functions encountered, and also formulae of the
type π[δ̄σW {δ̄0 → δ̄}] – that is the arbitrary predicate
applied to the current symbolic values σW {δ̄0 → δ̄} of the
critical variables of the While loop. This is done for each
possible execution path of the loop.

Consider the loop of Example 2. The corresponding
termination condition is:

∀
x,y,u,v

a>0∧b>0

∧

(x = y) ⇒ π[x, y, u, v]
(x > y ∧GCD[x, y] = GCD[a, b]

∧x > 0 ∧ y > 0 ∧ x ∗ u + y ∗ v = 2 ∗ a ∗ b
∧π[x− y, y, u, v + u]) ⇒ π[x, y, u, v]

(x < y ∧GCD[x, y] = GCD[a, b]
∧x > 0 ∧ y > 0 ∧ x ∗ u + y ∗ v = 2 ∗ a ∗ b
∧π[x, y − x, u + v, v]) ⇒ π[x, y, u, v]

⇒ π[a, b, b, a]

The termination analysis of the loop stops if it finds
abrupt statements. If the loop terminates due to break
then a termination condition of the respective loop on the
current path is generated and the control is transferred to the
statement immediately following that loop.

If the loop terminates due to Return statement then the
program terminates on the respective execution path and
consequently termination conditions for each loop analyzed
until the respective point have to be generated. The calculus
dealing with these situations is under development.

2) Termination of Non-Recursive Programs containing
Normal Terminating Non-Nested While Loops: The gen-
eral idea behind termination of mentioned programs is to
generate a tuple of termination conditions corresponding to
the While loops of the program. They ensure the termina-
tion of the program itself. For simplicity of presentation we
assume that Return, assignments, If and While condi-
tions do not contain composite terms. A presentation of the
definitions corresponding to recursive calls and additional
functions can be found in [7].

The inductive definitions for the meta-function Θ are as
follows.

Definition 5:
1) Θ[P] = Θ[{ᾱ → ᾱ0}, If [ᾱ], P]{ᾱ0 → ᾱ}
2) Θ[σ, Φ, 〈Return[γ̄]〉 ^ P] = 〈〉
3) Θ[σ, Φ, 〈v := γ〉 ^ P] = Θ[σ{v → γσ}, Φ, P]
4) Θ[σ, Φ, 〈v := h[γ]〉 ^ P] = Θ[σ{v → h[γσ]}, Φ, P]
5) Θ[σ, Φ, 〈If[ϕ, PT , PF]〉 ^ P] =

Θ[σ, Φ∧ϕσ, PT ^ P]∧Θ[σ, Φ∧¬ϕσ, PF ^ P]
6) Θ

[
σ, Φ, 〈〉] =

(
(Φ ∧ π[δ̄σ]) ⇒ π[δ̄]

)

7) Θ[σ, Φ, 〈While[ϕ, ι, B] ^ P] =

^

Θ
[
σ,Φ ∧ ¬ϕσ, P

]
〈
∀̄

δ:Φ
∧

{(¬ϕσ0 ⇒ π[δ̄σ0]
){δ̄0→δ̄}

Θ
[
σ0,ϕσ0∧ισ0,B

]{δ̄0→δ̄}

}
⇒π[δ̄σI]

〉

Θ
[
σ′, Φ ∧ ισ′ ∧ ¬ϕσ′, P

]

The termination analysis of the program P starts with
symbolic values for the input variables and it is performed
only for those satisfying the input condition (Definition
5.1). The meta-function Θ works by symbolic execution
updating eventually the substitution (e.g. Definitions 5.3, 5.4,
or the substitution at the entry and exit of the loop) and the
conditional part of the termination condition (e.g. Definitions
5.5, 5.6) or generating the termination condition of the whole
program. (e.g. Definition 5.2). Each time Definition 5.7 is
applied, a new symbol π is generated for expressing the
termination condition of the respective loop.

End of the loop requires the generation of the termination
condition on the respective path, case when the symbol π
associated with the currently analyzed While loop has to be
used. If the loop terminates then its characterization together
with the accumulated assumptions until the loop entry are
used as a conditional formula for reasoning about the
termination rest of the program. The loop characterization
is a formula expressing the relationship between the critical
variables and some outer loop variables – actually the loop
invariant, as well as the loop condition falsified by the exit
values of the loop.

For the Example 2 there were three paths taken into
consideration, but only the one analyzing the loop counts
to the termination analysis of the program.

∀
x,y,u,v

a>0∧b>0

∧

(x = y) ⇒ π[x, y, u, v]
(x > y ∧GCD[x, y] = GCD[a, b]

∧x > 0 ∧ y > 0 ∧ x ∗ u + y ∗ v = 2 ∗ a ∗ b
∧π[x− y, y, u, v + u]) ⇒ π[x, y, u, v]

(x < y ∧GCD[x, y] = GCD[a, b]
∧x > 0 ∧ y > 0 ∧ x ∗ u + y ∗ v = 2 ∗ a ∗ b
∧π[x, y − x, u + v, v]) ⇒ π[x, y, u, v]

⇒ π[a, b, b, a]

The Binary Division algorithm (Example 4) [10] contains
two non-nested While loops. (The integer type of the
variable k was omitted for the simplicity of the presentation.)

Specification[”BinaryDivision”, BD[↓ A, ↓ B],
Pre→ A ≥ 0 ∧B > 0,
Post→ β = A%B]

Program[”BinaryDivision”, BD[↓ A, ↓ B],
q = 0; r = A; b = B;
While[r ≥ b,(∃

k≥0
b = 2k ∗B

) ∧ q = 0 ∧ r = A ∧A ≥ 0 ∧B > 0,

b = 2 ∗ b];
While[b 6= B,

A = q∗b+r∧r ≥ 0∧(∃
k≥0

b = 2k∗B)∧B > 0∧b > r,

q = 2 ∗ q; b = b/2;
If[r ≥ b,

q = q + 1; r = r − b]];
Return[r]]

Specification→ Specification[”BinaryDivision”]]

Example 4. Binary Division Algorithm, by Kaldewaij

It terminates if the below termination conditions are valid.

∀
b,A,B

A≥0∧B>0

∧

(r < b) ⇒ π1[b](
r ≥ b ∧ (∃

k≥0
b = 2k ∗B

) ∧ q = 0 ∧ r = A

∧A ≥ 0 ∧B > 0 ∧ π1[2 ∗ b]
) ⇒ π1[b]

⇒ π1[B]

∀
q,b,r,A,B

A≥0∧B>0
A<B

∧

(b = B) ⇒ π2[q, b, r](
b 6= B ∧A = q ∗ b + r ∧ r ≥ 0
∧(∃

k≥0
b = 2k ∗B

)∧B>0∧ b>r∧ r≥b

∧π2[2 ∗ q + 1, b/2, r − b]
) ⇒ π2[q, b, r](

b 6= B ∧A = q ∗ b + r ∧ r ≥ 0
∧(∃

k≥0
b = 2k ∗B

)∧B>0∧b>r∧r<b

∧π2[2 ∗ q, b/2, r]
) ⇒ π2[q, b, r]

⇒ π2[0, B, A]

∀
q,b,r,A,B

A≥0∧B>0
r=A∧A≥0

B>0

∃
k≥0

b′ = 2k ∗B∧ q = 0 ∧ r < b′∧

(b = B) ⇒ π2[q, b, r]
b 6= B ∧A = q ∗ b + r ∧ r ≥ 0
∧(∃

k≥0
b = 2k ∗B

) ∧B > 0 ∧ b > r

∧r ≥ b ∧ π2[2 ∗ q + 1, b/2, r − b]
⇒ π2[q, b, r](
b 6= B ∧A = q ∗ b + r ∧ r ≥ 0
∧(∃

k≥0
b = 2k ∗B

) ∧B > 0 ∧ b > r

∧r<b∧π2[2 ∗ q, b/2, r]
)⇒π2[q, b, r]

⇒π2[0, b′, A]

Actually there are seven paths to be considered for the
termination of the program, but the ones which do not take
into consideration the analysis of loops at all, the ones which
consider that all the loops terminates, and the ones obtained
by combining the previous two situations do not lead to
termination conditions.

IV. CONCLUSION

The calculus presented in this paper combines forward
symbolic execution and functional semantics for reasoning
about imperative non-recursive programs.

A main direction for future work consists in the extension
of the calculus to abrupt terminating [nested] loops. More-
over one needs to develop efficient methods for proving the
verification conditions.

ACKNOWLEDGMENT

The first author was supported by the Upper Austrian
Government.

REFERENCES

[1] B. Cook and A. Podelski and A. Rybalchenko, Termination
Proofs for Systems Code, ACM SIGPLAN Notices 41 (2006),
no. 6, 415–426.

[2] B. Beckert, R. Hähnle, and P. Schmitt (eds.), Verification of
Object-Oriented Software: The KeY Approach, LNCS 4334,
Springer-Verlag, 2007.

[3] D. Bjørner and M. Henson, Logics of Specification Lan-
guages, Springer, 2008.

[4] R. Boute, Calculational Semantics: Deriving Programming
Theories from Equations by Functional Predicate Calculus,
ACM Transactions on Programming Languages and Systems
28 (2006), no. 4, 747–793.

[5] B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia,
K. Nakagawa, F. Piroi, N. Popov, J. Robu, M. Rosenkranz,
and W. Windsteiger, Theorema: Towards Computer-Aided
Mathematical Theory Exploration, Journal of Applied Logic
4 (2006), no. 4, 470–504 (english).

[6] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens,
R. Leino, and E. Poll, An Overview of JML Tools and
Applications, International Journal on Software Tools for
Technology Transfer 7 (2005), no. 3, 212–232.

[7] M. Eraşcu and T. Jebelean, Practical Program Verification
by Forward Symbolic Execution: Correctness and Examples,
Austrian-Japan Workshop on Symbolic Computation in Soft-
ware Science (Bruno Buchberger, Tetsuo Ida, and Temur
Kutsia, eds.), 2008, pp. 47–56.

[8] R. Floyd, Assigning Meaning to Programs, Proc.of Symposia
in Appl. Math. American Mathematical Society, 1967.

[9] D. Gries, The Science of Programming, Springer, 1981.

[10] A. Kaldewaij, Programming: the Derivation of Algorithms,
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990.

[11] J. King, A New Approach to Program Testing, Proceedings of
the international conference on Reliable software (New York,
NY, USA), ACM, 1975, pp. 228–233.

[12] L. Lamport, Specifying Systems: The TLA+ Language and
Tools for Hardware and Software Engineers, Addison-Wesley
Professional, July 2002.

[13] J. Loeckx, K. Sieber, and R. Stansifer, The Foundations of
Program Verification, John Wiley & Sons, Inc., New York,
NY, USA, 1984.

[14] J. McCarthy, A Basis for a Mathematical Theory of Computa-
tion, Computer Programming and Formal Systems (P. Braffort
and D. Hirschberg, eds.), North-Holland, Amsterdam, 1963,
pp. 33–70.

[15] W. Schreiner, Understanding Programs, Tech. report, Re-
search Institute for Symbolic Computation, July 2008.

[16] J. Stoy, Denotational Semantics: The Scott-Strachey Approach
to Programming Language Theory, MIT Press, Cambridge,
MA, USA, 1981.

[17] S. Wolfram, The Mathematica Book. Version 5.0, Wolfram
Media, 2003.

